test_mean (__main__.TestFasterNumpy) ... ## benchmarker: release 4.0.1 (for python)
## python version: 2.7.12
## python compiler: GCC 5.4.0 20160609
## python platform: Linux-4.4.0-62-generic-x86_64-with-debian-stretch-sid
## cpu model: Intel(R) Core(TM) i7-3517U CPU @ 1.90GHz # 2799.937 MHz
## parameters: loop=100000, cycle=1, extra=0
## real (total = user + sys)
numpy.mean 1.3785 1.3800 1.3800 0.0000
faster_numpy.cython.mean 0.2032 0.2100 0.2000 0.0100
faster_numpy.clibrary.mean 0.1355 0.1300 0.1300 0.0000
faster_numpy.clibrary.mean partial 0.1705 0.1700 0.1700 0.0000
## Ranking real
faster_numpy.clibrary.mean 0.1355 (100.0) ********************
faster_numpy.clibrary.mean partial 0.1705 ( 79.5) ****************
faster_numpy.cython.mean 0.2032 ( 66.7) *************
numpy.mean 1.3785 ( 9.8) **
## Matrix real [01] [02] [03] [04]
[01] faster_numpy.clibrary.mean 0.1355 100.0 125.8 149.9 1017.0
[02] faster_numpy.clibrary.mean partial 0.1705 79.5 100.0 119.2 808.3
[03] faster_numpy.cython.mean 0.2032 66.7 83.9 100.0 678.4
[04] numpy.mean 1.3785 9.8 12.4 14.7 100.0
ok
----------------------------------------------------------------------
Ran 1 test in 1.900s
I’d like to get any feedback to make cython faster like c extension.
コメント